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UCLA Engineering Research Interests

€ Ann Karagozian (MAE): Simulations of Non-equilibrium reactive and plasma flows for EP
&laser-plasma interactions (LPI).
@ Richard Wirz (MAE): Space Electric Propulsion, PMI, edge plasma flows.
€ Dan Goebel (MAE): PMI, Pulsed power, Space Electric propulsion.
€ Jaime Marian (MSE): Atomistic computer simulations, sputtering & defect physics.
\0 Nasr Ghoniem (MAE): PMI, Space Electric Propulsion, Pulsed Power, Defect Physics. )

/1. Karagozian Research on Reactive Gases & Plasmas. \
2. Wirz/ Goebel Research on Electric Propulsion.
3. Experimental Facilities.

4. Commonality between PMI for fusion & EP applications.

5. Thermomechanics in Severe Pulsed Plasma Environment.

6.
\

Surface Stability. )




Modeling of Nonequilibrium Reactive Gases and

Plasmas: Fluid Models and Beyond

Richard Abrantes, Hai P. Le, and Ann R. Karagozian
UCLA Department of Mechanical and Aerospace Engineering

» Our computational research focuses on simulating
non-equilibrium processes in reactive and plasma flows, using:
» Collisional-Radiative (CR) kinetics
» Single-Fluid (SF) Magnetohydrodynamics
» Multi-Fluid (MF) Modeling
» Applications of interest include:
» Electric propulsion for spacecraft systems
» Plasma-Assisted Combustion Systems (PACS), including

> Plasma ignition processes
> Pulse Detonation Rocket Induced MHD Ejector (PDRIME)

» Laser-Plasma Interactions (LPI), including
» High Energy Density Physics (HEDP)
> Laser-Induced Breakdown Spectroscopy (LIBS)



Collisional-Radiative (CR) Modeling

» Detailed state-to-state approach in determining temporal
evolution of the system’s average charge state, relaxation
timescales, and other transient phenomena

» Rates for all processes associated with each plasma state are
summed to a highly stiff system of ordinary differential
equations and propagated in time to evolve the system.
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Single-Fluid Modeling

» Embeds relevant species into continuity equation for solving
the Euler equations

» Coupling of the species and Euler equations helps elucidate the
effect changes in the atomic scale have on large scale motions
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Comparison of electron number and total mass densities for
ionizing shocks in Argon with UTIAS experiments. Note the
change in induction length as a function of time.



Multi-Fluid (MF) Modeling

» Extends Single-Fluid model by including another set of Euler
equations for other species, such as the electron fluid

» Aim of increasing number of fluid equations is to capture
events/processes that are unresolved by low order
approximations, such as those observed in HEDP

Work being explored:
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UCLA Facilities: Pi (Erosion) and HEFTY
(Thermo-mechanics) : Wirz/Goebel/Ghoniem

Pi v2 (Enhanced with in-Situ Diagnostics)

1) In-situ plasma and material analyses
2) Non-intrusive plasma diagnostics

3) lon energies, 50 — 300 eV

4) Plasma pulsing capabilities
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DURIP: In Situ Precision Diagnostic Facility for Studies of
Materials and Processes Far From Equilibrium
(Wirz, Ghoniem, Kodambaka; UCLA)

Pi v2
World-class diagnostic suite for in-situ plasma-material analysis

Long focal length
spectrometer w/
CCD and PMT
detection
(Horiba
FHR1000)

Rotating witness plate: | QCM: sputter rate |

time-resolved sputter
composition
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Long distance microscope:
in-situ topology evolution
(Questar QM100)

Faraday probe: ion flux
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Common Science & Engineering Issues
between Space EP & Fusion PMI
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Lifetime and Performance of EP & PP Devices
are Determined by the Physics of Plasma-Material Interaction
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Heterogeneous Multiscale
Multiphysics Mechanical (HMMM)
Deésign of Fusion Components
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The Heterogeneous Multiscale Method
(HMM) for Thermo-Mechanics

The Macroscale is Based on the
Ghoniem-Matthews-Amodeo (GMA)
Viscoplasticity Model - (Res
Mechanica 29, 197 (1990) -updated
2015)

The Microscale is Based on the
MODEL Code (Mechanics Of Defect
Evolution Library) Developed by Po,
Ghoniem et al. (JMPS 66:103-116,

2014.)
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GMA Model Applied to Micro-pillars

Tangential Stress Under Thermal Loading

15 : ' Time=43 s Tangential Stress (GPa)
e tapered W-Re micro—pillar, 27 MW/nf g
| === non-tapered W-Re pillar, 19 MW/n? 1 A 1 35
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Tangential stress in W coating for a tapered and un-
tapered micropillar, similar stress response even though
the tapered pillar is undergoing a greater heat flux -1
FE simulation was conducted to 1.5
investigate the stress response of )
the pillars during thermal pulsing
Vv -1.8

Geometric features such as
tapering of the pillars appear to play
a significant role in the stress
response

FEA results showing residual tangential
stress in a micropillar after 6 cycles of 27
MW/m”2 heat flux exposure, semi-infinite

Model consists of a Re core solid BC applied at base of pillar

undergoing elastic deformation and
a VV casing allowed to deform
plastically



W-Re micro-pillar after thermo-mechanical
testing, showing evidence of cracking along

the surface

W-Re micro-pillar after thermo-mechanical
testing

« Under pulsed plasma transients, pillars show fracture behavior dependent upon

size and coating thickness
« Opens the possibility to establish design criteria for micro-architected materials, in

essence, geometry plays a key role in the thermo-mechanical response and can be
optimized to yield an ideal materials system



Sigmund’s theory of sputtering, the average energy deposited by

by an ion:
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parameters a, o, 3

Projecting the normal velocity along the vertical
h-axis, and adding a term for surface diffusion
results in the following height equation:
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Symbol Parameter Unit
J Ton flux m2s7!
P corrected flux m2s7!
€ Ion energy eV
D relates binding energy ~ m/eV
velocity of erosion
surface density m=2
a, B Dimensions of m
collision cascade
a Depth of ion m
penetration
Ao a/a N/A
Rx, Ry radius of curvature m

12
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Micro-architected Molybdenum & Tungsten Response to j
Continuous Plasma Exgosure Show a reduction in of Erosic*\

* Aouys?®

Wirz R.E., Ghoniem N.M.,
“Reconfigurable Long-Life Plasma
Systems,” UCLA Invention Report
4 2015
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&’ Deposition and Re-deposition Processes

Surface feature before and after 5t fluence exposure of 1x1023 m-2
Self-healing of materials
Process 1: Sputter deposition

@ Direct deposition onto adjacent surfaces

@ Achieved by material design

Process 2: Re-deposition

@ Deposition after interaction with plasma

@ Achieved by device design
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Unexposed 5x10%! m2 1.5x1022 m*2 6.5x10%2 m2 1.15x10% m™

* Sputter deposition has been observed experimentally on
micro-architectured samples
* Current model does not account for deposition

GOAL: Expand BH equation model to include deposition term
Ghoniem-UCLA




% 10" Island Density

Island Formation Measurements

Density, (islands/mz)

1

1
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Fluence, [m] 2

Radius of spacing between
islands compared to the radius
of islands themselves

Coalescence point occurs where
lines intersect at ~1023 m?,
when island size is larger than
spacing between them.

Radius, [nm]

Fluence corresponds to: 1s
(MPD), 1 min (Hall), 3 hrs (lon
Grid).
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* Analysis performed in SEM images
provides island density information
on dendrite faces

* Density of island formation
increases as a function of fluence

e Rate of island formation levels off at
higher fluences

Island size vs. spacing

--Spacing radius
—Average island radius
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