

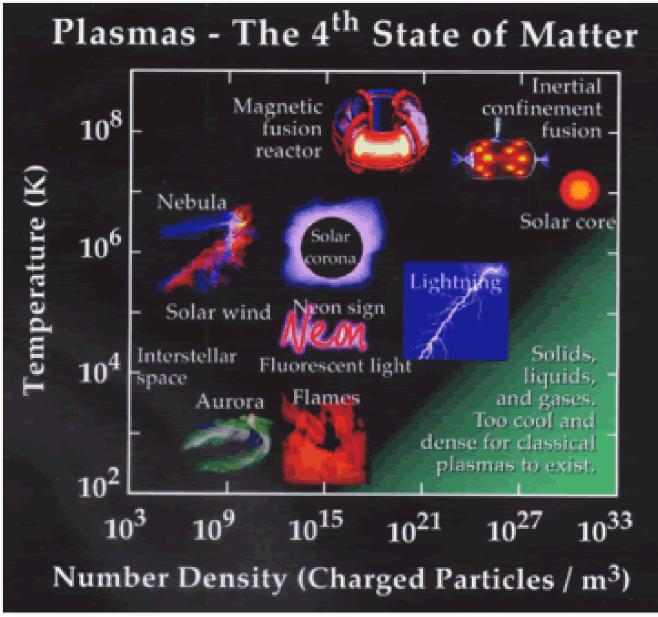
Math for Plasma Sciences

Russel Caflisch IPAM Mathematics Department, UCLA

math changes everything.

Plasma Fest 2015

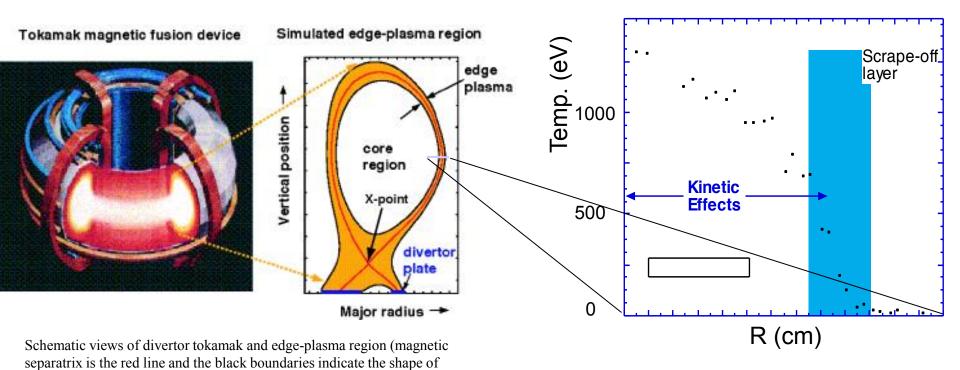
Plasmas



Plasma Fest 2015

magnetic flux surfaces)

Where are collisions signifiant in plasmas? Example: Tokamak edge boundary layer



Edge pedestal temperature profile near the edge of an H-mode discharge in the DIII-D tokamak. [Porter*2000*]. Pedestal is shaded region.

What Can Math Add?

- Phenomenology
 - Multiscale
 - Complex
- Numerical methods
 - Monte Carlo simulation
- New mathematical methods
 - Compressed sensing and sparsity

Examples of Math for Plasmas

- Hybrid combination of continuum and particle dynamics
- Sparsity and compressed sensing

- Hybrid schemes
- Negative particles

- Phase space particle number density $f(\vec{x}, \vec{v}, t)$
- Boltzmann Equation:

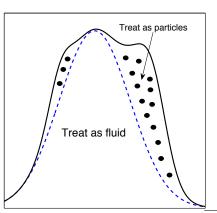
$$\partial_t f + \vec{v} \cdot \nabla_x f + \vec{a} \cdot \nabla_v f = Q(f, f) \tag{1}$$

Q(f,f) is:

- Boltzmann collision operator for rarefied gas dynamics (RGD)
- Landau-Fokker-Planck (LFP) operator for Coulomb collisions

Hybrid Scheme

Combine fluid and particle simulation methods¹:

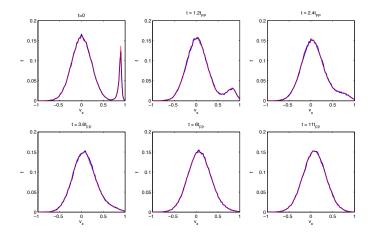


- Separate *f* into Maxwellian and non-Maxwellian components: *f* = *m* + *k*
- Treat m as fluid
- Simulate k by particles
- Sample particles from *m* and collide them with *k*
- Fully nonlinear δf
- Thermalize particles in *k*, using entropy criterion^a

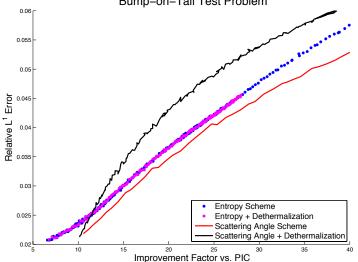
^aRicketson et. al, J. Comp. Phys., 2014.

¹Caflisch et. al, Multiscale Model. Simul. 2008

Bump-on-Tail



Scheme Comparison



Bump-on-Tail Test Problem

Negative particles

Negative deviations from Maxwellian through $k = f_p - f_n$

- Particle number can increase
 - Offsetting pairs of positive and negative particles
- Reformulation that limits growth of particles²
 - Coarse-grained, direct simulation

$$\partial_t \tilde{f} = Q(\tilde{f}, \tilde{f})$$

• Fine-grained, deviatoric simulation

$$\partial_t m = 0$$

 $\partial_t f_p = Q(\tilde{f}, f_p) + Q(f_p - f_n, m)_+$
 $\partial_t f_n = Q(\tilde{f}, f_n) + Q(f_p - f_n, m)_-$

Limits growth of particle number

²Yan & Caflisch, J. Comp. Phys., to appear.

Nonlinear Landau damping

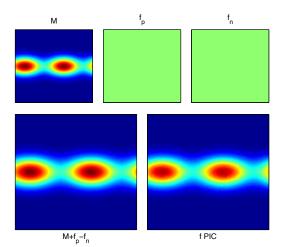


Figure: The snapshot in phase space (x, v_1) . t = 0.0000.

Nonlinear Landau damping

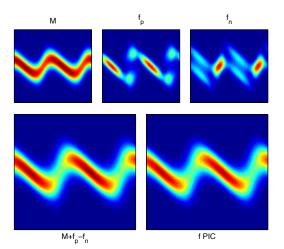


Figure: The snapshot in phase space (x, v_1) . t = 0.5236.

Nonlinear Landau damping

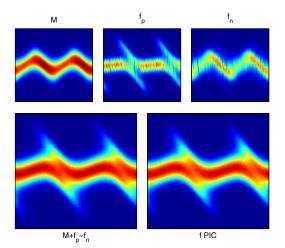


Figure: The snapshot in phase space (x, v_1) . t = 1.1519.

Compressed Sensing and Sparsity

- Developed for information science and optimization
- Applications to PDEs and physics are starting
- Possible applications to plasma science
 - Reduced description of complex phenomena
 - Framework for multiscale modeling and simulation

Sparsity

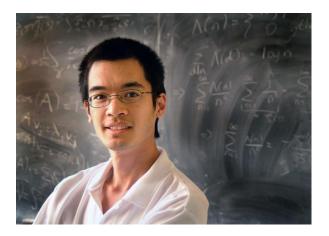
- Sparsity in datasets (e.g., sensor signals)
 - Signal $x \in \mathbb{R}^N$ which is "m-sparse", with $m \ll N$
 - i.e., x has at most m non-zero components
 - n measurements of x, corresponds to

$$f = Ax \in \mathbb{R}^n \quad A \text{ is } n \times N$$

- Objectives
 - How many measurements are required?
 - What is the value of n?
 - How hard is it to compute x?
 - Tractable or intractable?

Compressed Sensing

- Compressed sensing 2006
 David Donoho
 - Emmanuel Candes, Justin Romberg & Terry Tao



UCLA How many measurements are required?

- For m << N, find m-sparse solution $x \in \mathbb{R}^N$ of $Ax = f \in \mathbb{R}^n$ A is $n \times N$
- Standard methods require: n = N
 - #(equations)=#(unknowns)
 - Np hard
- Compressed sensing: $n = m (\log N)$
 - n << N. Many fewer equations than unknowns!</p>
 - Solution is exact with high probability!
 - Reduced isometry property (RIP)
 - convex programming

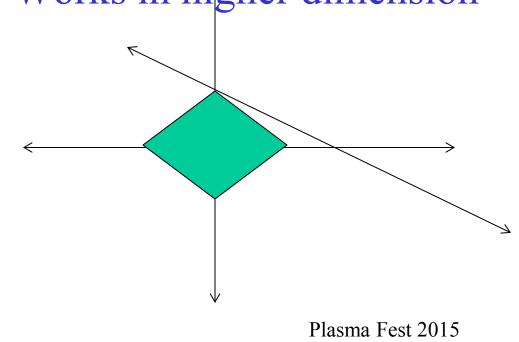
Plasma Fest 2015

Geometric description

• Find x on line $a_1x_1 + a_2x_2 = f$ with smallest $||x||_1$ $||x||_1 = |x_1| + |x_2|$

– For all but 45° lines, L¹ norm is smallest at a vertex.

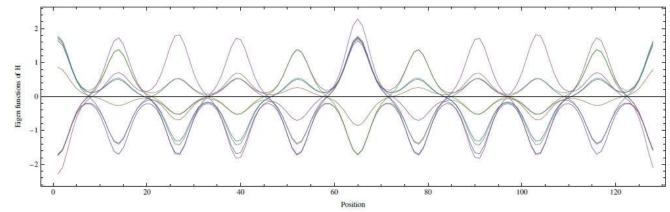
Vertices are sparse points, since a component is 0.
Works in higher dimension



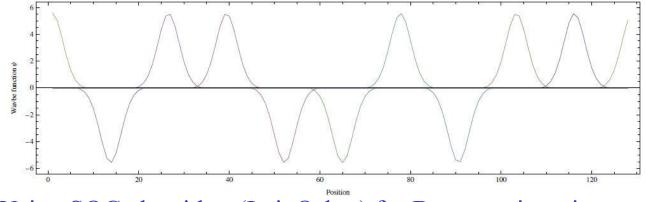
Eigen-Modes vs. Compressed Modes for 1D Kronig-Penney

10 Eigen-Modes for KP

UCLA



10 Compressed Modes for KP

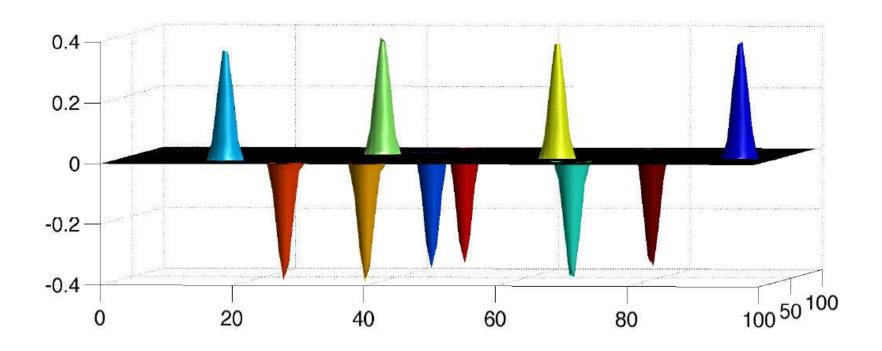


Using SOC algorithm (Lai, Osher) for Bregman iteration

Ozolins, Lai, Caflisch & Osher, PNAS 2013

Plasma Fest 2015

Compressed Modes for 3D Free Electron Model (V=0)



Plasma Fest 2015

Mathematicians at Plasma Fest

UCLA
 Faculty
 Chris Anderson
 Russ Caflisch
 Stan Osher
 Joey Teran

Student & Postdocs Yi Chen Hai Le Craig Schroeder Jonathan Siegel Bokai Yan • LLNL Jeff Hittinger

- AFRL Rob Martin
- UC Merced Maya Tokman